SystemML: Declarative Machine Learning on Spark

05/03/19

Presented by: <u>Juan Carrillo</u> Candidate for MASc. in Computer Software Department of Electrical & Computer Engineering University of Waterloo

Agenda

- 1. Introduction
- 2. SystemML core features
- 3. Experiments
- 4. Conclusions
- 5. Discussion

1. Introduction

Machine Learning for Big Data Analytics

1. Introduction

The problem, and the SystemML approach

Simplifies deployment

Source: Spark Summit. Inside Apache SystemML

SystemML: Declarative Machine Learning on Spark

PAGE 5

1. Introduction

SystemML background

Optimizer integration

Source: Spark Summit. Inside Apache SystemML

Optimizer integration

Source: Spark Summit. Inside Apache SystemML

Optimizer integration

Source: Spark Summit. Inside Apache SystemML

Runtime integration

Distributed Matrix Representation

Figure 2: Distributed Matrix Representation.

Buffer Pool Integration

Figure 3: Buffer Pool Integration.

Runtime integration

3. Experiments

End-to-End Performance

Figure 4: End-to-End Performance of Different Algorithms with Different Execution Modes.

3. Experiments

Runtime per Iteration

Figure 5: Runtime per Iteration of LinregCG and L2SVM with Different Execution Modes.

4. Conclusions

Takeaways and paper contributions

- Importance of DML as a high-level language to improve interoperability and scalability of Machine Learning models on Spark
- Multiple layers of abstraction and optimizations make SystemML a powerful tool for accelerating the development of Machine Learning models over Big Data
- Experimental evaluation on multiple ML models and datasets

Thanks for your attention

Discussion 6

5. Discussion

Research

- 1. Optimizer. How to optimize ML models over data streams?
- 2. Runtime. In dynamic recompilation, what could be unknown data characteristics?
- 3. Experiments. How SystemML might perform for the KNN algorithm?

Industry

- 5. Current capabilities compared to other tools such as Numpy, Scikit Learn, or TensorFlow?
- 6. Adoption in the current ML and Big Data user base?
- 7. SystemML in Cloud computing infrastructure. Beyond IBM?

